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The diffusion-limited kinetics of the growth of a depletion zone around a static point trap in a thin, long
channel geometry was studied using a laser photobleaching experiment of fluorescein dye inside a flat rectan-
gular capillary. The dynamics of the depletion zone was monitored by theu distance, defined as the distance
from the trap to the point where the reactant concentration has been locally depleted to the specified survival
fractionsud of its initial bulk value. A dimensional crossover from two dimensions to one dimension, due to the
finite width of the reaction zone, was observed. We define a “parallel” and a “perpendicular”u distance, along
the slab long and short dimensions, respectively, and study their time development as a means to study the
asymmetrical nature of the slab geometry. For allu values, the crossover occurs concurrently for bothu
distances when the depletion zone touches the boundary for the first time. We derive theoretical expressions for
this geometry and compare them with the experimental data. We also obtain important insight from the ratio of
the reactant concentration profiles in the parallel and perpendicular directions. Exact enumeration and Monte
Carlo simulations support the anomalous depletion scaling results. Nevertheless, the crossover timestcd is still
found to scale with the widthsWd of the rectangular reaction zone astc,W2, as expected from the basic
Einstein diffusion law.
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I. INTRODUCTION

In a series of recent papersf1–3g we have addressed the
issue of the anomalous depletion zone of Brownian particles
around a static trapspoint trap and finite-sized trapd, perfect
and imperfect, in one and two dimensions, as a means to
study photobleaching and other “trapping” dynamics in low
dimensions. Because of the sensitivity of anomalous kinetics
to the spatial dimensionality of the systemf4–15g, we ex-
tend, in the current work, our earlier studies to study the
typical geometry of a flat microchannel.

It has been well established that the kinetic laws for reac-
tions in a diffusion-limited environment are considerably dif-
ferent from the conventional rate laws, due to the spatial
correlations of the reactants, originating from the ineffi-
ciency of the diffusive mixingf4–12g. One of the simple
cases of the diffusion-limited reaction is the trapping reaction
A+T→T, whereT is a static trap andA is a diffusing species
that may be annihilated upon collision with the trap, depend-
ing on the trap strength. The trapping reaction in a diffusion-
limited environment is closely related to a variety of pro-
cesses, such as electron-hole trapping and recombination,
exciton trapping, soliton-antisoliton recombination, phonon
upconversion, free radical scavenging, electrolysis, etc. In
many cases, the process occurs in low dimensional systems
such as pores, filaments, microcapillaries, or thin molecular
wires f6g. The occurrence ofA-T reactions creates a zone of
depletion around the trap, which is a form of self-segregation
of reactants. The growth of the depletion zone in the trapping
reaction in low dimensions leads to anomalous kinetics for a

variety of dynamic quantities. For example, the nearest
neighbor distance was found to increase asymptotically as
t1/4 in one dimensions1Dd f7,8g and sln td1/2 in two dimen-
sions s2Dd f9–11g, while the trapping reaction’s global rate
was shown to decrease asymptotically ast−1/2 in 1D f7,8g
and sln td−1 in 2D f10,11g, wheret is the time elapsed since
switching-on of the trap.

A quantity relevant for the description of the depletion
zone is the so-calledu distancesrud, which is the distance
from the trap to the point where the local concentration of
surviving A particles,csr ,td, reaches the specified survival
fraction u s0øuø1d of its value in the bulkc0 f9,10g, i.e.,

csru,td = uc0. s1d

The u distance has been shown, by theoryf10g and experi-
ment f1g, to increase asymptotically ast1/2 in 1D. The t1/2

dependence in 1D is explained on the basis of diffusion of
particles towards the trap. In two dimensions, though, theu
distance has been shown theoretically to behave in an
anomalous manner, exhibiting a nonuniversaltu/2 behavior in
the long-time limitf9–11g. These results have been recently
confirmed experimentallyf1–3g. In f1–3g we have used a
Hele-Shaw cell, 150 micron thick, in order to produce both
one-dimensional s“line trap” f1gd and two-dimensional
s“point trap” f2,3gd systems. This experimental design al-
lowed us to measure the temporal changes in the spatial dis-
tribution of the reactants at the trap vicinity, and then to
analyze the dynamics of the depletion zone through theu
distance measure. In addition, an interesting short-time be-
havior has been observed, in particular in two dimensions.
The effects of the finite size and the shape of the trap have
been studied as well.
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In this paper we study the depletion zone formed in two-
dimensional slablike geometry for a single point trap, located
in the middle of the slab. Such a confined geometry interpo-
lates between 2D and 1D dimensionalities, thus allowing one
to examine the dimensional crossover behavior.

The experimental manifestation of the slab geometry is a
flat capillary sFig. 1d. The capillary is 50 mm long, of the
order of 1 mm wide, and 0.1 mms100 mmd thick. This size
suggests that this capillary is primarily a quasi-one-
dimensional object. However, since the width and the thick-
ness differ by an order of magnitude in size, this capillary
can be considered as a quasi-two-dimensional object, thus
allowing us to study experimentally a possible dimensional
crossover between the local two-dimensional geometry and
the one-dimensional dominant shape of the capillary.

It should be noted that, in such a geometry, careful con-
sideration should be given to the proper definition of the
depletion zonesi.e., the u distanced, as one no longer has
either the radial symmetry of the two-dimensional case, or
the trivial geometry of the one-dimensional case. We have
therefore measured the depletion zone along the two extreme
possibilities. The first isparallel to the slab length and the
other isperpendicularto this direction, which is the shortest
possible direction, limited by the slab width size.

We have also looked at the shape of the profiles along
these two orthogonal lines, in order to gain more insight on
the asymmetrical nature of the diffusion in the presence of a
point trap in the slab geometry. In particular, we have studied
the ratio of these quantities and its dimensional crossover
characteristics.

The paper is organized as follows: In Sec. II we describe
the experimental methodology and the experimental results.
In Sec. III we derive theoretical expressions for this system
and compare them with the experimental data. In Sec. IV we
present simulation data performed using two methods:
Monte Carlo simulations and exact enumeration. Finally, we
summarize the work in Sec. V.

II. EXPERIMENT

A. Methods

The experiment is the laser photobleaching of fluorescein
dye molecules in an aqueous solution. The fluorescein dif-
fuses in water with a diffusion coefficient of 4.37
310−10 m2 s−1 f16g. The photobleaching reaction occurs
within the laser focus, inside a thin, long rectangular glass
capillary with dimensions 0.1 mm31 mm350 mmsFig. 1d.

An aqueous solution of fluorescein was prepared in a
phosphate buffer solution atpH 8.5 with a concentration of
3.6310−5 M. Spectroscopic grade fluorescein dye was pur-
chased from Aldrich and used without further purification.
The buffer solution was used to increase the solubility of the
fluorescein as well as to prevent any potentialpH change of
the solution during the photobleaching process. The aqueous
fluorescein solution was injected into the capillary using a
glass pipette. After the sample injection, the capillary was
sealed with epoxy to prevent the evaporation of the sample
solution during the data acquisition.

The schematic diagram of the experimental setup is
shown in Fig. 2. A 488-nm laser beam out of an air-cooled
Ar-ion lasersIon Laser Technology, model no. 5490AWC-0d,
introduced from above the capillary, is focused at the center
of the rectangular capillary to photobleach the dye mol-
ecules, producing a circular trap cross section on the 1 mm
350 mm sample plane. The output power of the laser beam
was 16 mW and the diameter of the beam at the focus on the
sample plane was approximately 65mm. Another light
source at 480±5 nm with approximately 1 in diameter, a Xe-
non arc lampsSutter Instrument Company, model: Lambda
DG-4d, located below the capillary, was used to probe the
progress of the photobleaching. The power density of the
probe beam is less than 0.1% that of the photobleaching laser
beam, so the effect of photobleaching by the probe beam is
negligible during the typical time scale of the experiment.
Further protection of the sample from the probe beam was
provided by two mechanical shutters installed in front of the
light sources. The two shutters operate out of phase to each
other, so that either the photobleaching beam or the probe
beam illuminates the sample alternately in time, which mini-
mizes the exposure of the sample to the probe beam.

The images of fluorescence emission from the sample
were collected during the photobleaching at different times,
using a CCD camerasRoper Scientific, model: Photometrics
Cool Snap ESd equipped with a macro lenssNikon, AF
Macro 60 mm f2.8, 1:1d. The image is 4.533.3 mm2 in size,
with a 6953518 pixel resolution and a 14-bit intensity reso-
lution. This produces an approximately 6.5mm/pixel spatial
resolution. Typical integration time of the CCD was 300 ms
for each image. The dye molecule becomes invisible from
the detector when photobleached, resulting in the intensity
drop in the fluorescence image.

FIG. 1. A schematic slab geometry with a point trap.

FIG. 2. A schematic diagram of the experimental setup.
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The progress of the photobleaching was monitored up to
1900 s in the typical experiment. The entire experiment is
performed at room temperature. A similar experimental setup
has been used recently to study the trapping reactions in
effective 1D and 2Df1–3g.

B. Results

Figure 3 shows a series of the fluorescence images at
t=1 s, 160 s, 500 s, and 1500 s from a point trap experiment
inside a rectangular capillary, illustrating the progress of the
photobleaching in time. The bright vertical band in the
middle of the image represents the reaction channel in the
rectangular capillary. The dark region, growing in the middle
of the reaction channel, reflects the depletion zone develop-
ing around the phototrap. We note that the radial symmetry
of the concentration profile, observed in normal 2D point
trap systemsf2,3g, does not exist in the current rectangular
capillary system, due to the narrow width of the reaction
channel. Hence, to examine the possible directional depen-
dence of the growth of the depletion zone around the point
trap, we extracted the fraction profiles of the local reactant
concentrations along the two separate pixel lines, parallel
sCid with and perpendicularsC'd to the channel, through the
center of the phototrap, as shown in Fig. 3sad. No evidence
for convection was seen, and the comparison of the results
below with purely diffusional theoretical models is consis-
tent with a convectionless reaction process.

The time evolutions of the two fraction profiles,Ci and
C', along the two pixel lines, are shown in Fig. 4. The time
ranges for both profiles in Fig. 4 are identical, from 1 s up to
1900 s. Two solid vertical lines in each plot indicate the
width of the rectangular capillary. A close comparison be-
tween the two profiles shows that they indeed develop dif-
ferently in time, as expected from the absence of a radial

symmetry for this geometry. For example, theCi decreases
to just below 0.6 at the distance corresponding to the width
of the capillary during the given time period of 1900 s, while
the C' decreases to as low as,0.45 at the boundary of the
capillary during the same period of time.

The reason for this behavior in the perpendicular direction
near the boundary is the effect of a diminished supply of
diffusing particles near the boundary. Qualitatively, the par-
ticle concentration in a region at a certain time is determined
by the combination of the flux into and the flux out of the
region at that time. With a trap in the middle of a space
having a dimension lower than 3, the flux into a region,
located in the interior part of the space outside the trap, is
smaller than the flux out of the region at a given time. This is
because the particles can diffuse out of the region freely,
while the trapping process permits fewer particles to diffuse
back into the region. This results in a concentration gradient
around the trap and the development of a “normal” concen-
tration profile. However, when the region is at or near the
boundary of the space, the flux out of the region towards the
trap is the same as without the boundary, while the flux into
the region is reduced further than without the boundary, be-
cause there is less or no reservoir space to supply particles
between the region and the boundary. This results in a faster
drop in the particle concentration near the boundary.

Eachu distance was measured directly from the profiles
in Fig. 4, and is presented in Fig. 5 as a function of time. The
u distance in the parallel and perpendicular direction is de-
noted asru

i and ru
', respectively. The solid straight lines

correspond to the theoretical asymptotic slope of1
2 for 1D

and the dashed straight lines represent the theoretical slopes
of u /2 for 2D. The boundary of the capillary width is located

FIG. 3. Fluorescence images from a point trap experiment at
selected times ofsad 1 s,sbd 160 s,scd 500 s, andsdd 1500 s, show-
ing the progress of the photobleaching of an aqueous fluorescein
solution inside a rectangular capillary. The bright vertical band rep-
resents the capillary and the dark region in the middle of the capil-
lary shows the growth of the depletion zone around the laser pho-
totrap in time.

FIG. 4. Profiles of the concentration fractions of reactants in
time from a point trap experiment, along a pixel linesad parallel,
and sbd perpendicular to the channel, as defined in Fig. 3sad. The
time range is from 1 s to 1900 s. The solid vertical lines represent
the width of the capillary channel.
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at a distance of,77 pixels from the trap center, and the trap
radius is,5 pixels, as can be obtained using the conversion
factor of 6.5mm/pixel described in the above Methods sec-
tion; both are indicated by dotted horizontal straight lines in
Fig. 5. An immediately noticeable feature in Fig. 5 is thatru

i

and ru
' for a given u value follow very similar dynamic

pathways for most times. This is since the difference in their
concentration profiles occurs only near the slab boundary, as
pointed out earlier. Specifically, atu=0.6 and 0.8, bothru

i

and ru
' follow the intermediate-time behavior observed be-

fore in 2D f2,3g, characterized as being slower than the
asymptotic scaling oftu/2, during the initial,200 s. In the
case ofu=0.4, one can see the typical early-time, high slope
inside the trap domain, which is also consistent with the
previous studyf2,3g.

At around 300 s, bothru
i and ru

', still coupled together,
start to deviate from the 2D behavior, crossing over into a
higher slope regime, seemingly approaching the 1D-like be-
havior at the long-time limit. This result indicates that the
dynamics of the growth of the depletion zone goes through a
dimensional crossover from an early-time 2D behavior to a
long-time 1D behavior in both parallel and perpendicular
directions in the rectangular capillary. The dimensional
crossover is induced by the geometric constraint of the reac-
tion space. After a slow growth of the depletion zone in the
early-time range, the long and narrow channel shape of the
rectangular capillary drives the depletion zone to grow at the
faster 1D rate, once the geometric constraint from the narrow
width of the capillary takes over. The faster concentration
decay along the perpendicular direction near the boundary of
the capillary, due to the diminished supply of reactant, dis-
cussed above, appears to have little effect on the overall
dynamics of theu distance. Its effect seems to be limited to
the close proximity of the reactor boundary, whereru

' be-
comes bigger thanru

i for u=0.6 and 0.8 in Fig. 5.
We also note that the deviation of theu distance from the

2D pathway starts to set in at,300 s, although theu dis-

tances for all threeu values are still far away from the
boundary at this time. In other words, theu distance seems to
“feel” the boundary of the reaction space well before it ac-
tually reaches this boundary. This is equivalent to the “res-
ervoir” depletion effect discussed above. Once theu distance
actually reaches the boundary of the capillary,ru

i continues
to cross over to a high-slope, 1D-like behavior, whileru

'

simply vanishes. It is somewhat surprising thatru
i, which has

no direct contact with the boundary over the entire process,
changes the dynamics from 2D to 1D almost simultaneously
with ru

', which has a direct interaction with the boundary. It
seems to imply that the boundary information is communi-
cated betweenru

i and ru
' in real time. Actually, the higher

parallel concentration profile compensates for the decreased
perpendicular profile.

III. THEORY

The slab geometry is sketched in Fig. 1. The length is
measured along the long coordinatex, and the width coordi-
nate isz, ranging fromz=−W/2 to z= +W/2 sW being the
total width of the slabd. The trap is located atsx,zd=s0,0d.

The analytical solution for this problem is based on the
solution for diffusion inside an infinite three-dimensional re-
gion bounded by two parallel planes atz=0 andz=W, sub-
ject to a unit instantaneous source of particles at a given
point sx0,y0,z0d at time t=0 f17g. Assuming that the two
boundaries satisfy reflecting boundary conditions, i.e., par-
ticles that reach these boundaries are reflected back inside
the slab, the concentration profile of the particles anywhere
inside the slab at timet, is given byf17g

psx,y,z;td =
1

8spDtd3/2e−sx2+y2d/4Dt o
n=−`

+`

fe−s2nW+ z0 − zd2/4Dt

+ e−s2nW− z0 − zd2/4Dtg. s2d

For a two-dimensional region with symmetrical boun-
daries around a source atz0=0, i.e., boundaries at
z=s−W/2 ,W/2d, they coordinate is omitted and the expres-
sion s2d reduces to

psx,z;td =
1

4pDt
e−x2/4Dt o

n=−`

+`

fe−fs2n + 1dW − zg2/4Dt

+ e−s2nW− zd2/4Dtg. s3d

In order to account for the cumulative effect of a continu-
ous source up to timet, one must consider a continuous
sequence of instantaneous sources at all times in the interval
f0,tg. This is equivalent to integrating with respect to the
time variablet of Eq. s3d,

psx,z;td = Asx,z;tdE
0

t 1

4pDt
e−x2/4Dt o

n=−`

+`

fe−fs2n + 1dW − zg2/4Dt

+ e−s2nW− zd2/4Dtgdt, s4d

where an amplitude functionAsx,z; td has been introduced in
order to be able to normalize the result in accordance with

FIG. 5. Theu distance vs time foru=0.4, 0.6, and 0.8 from a
point trap experiment. The solid squaressru

id represent theu dis-
tance measured from Fig. 4sad and crossessru

'd from Fig. 4sbd. The
ru

i andru
' demonstrate a similar time scaling behavior for a given

u value until they reach the boundary of the capillary, after which
ru

i continues to grow whileru
' simply vanishes.
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the boundary conditions of our two-dimensional trapping
system. Interchanging the order of summation and integra-
tion, we obtain

psx,z;td = Asx,z;td o
n=−`

+` E
0

t 1

4pDt
e−x2/4Dt fe−fs2n + 1dW − zg2/4Dt

+ e−s2nW− zd2/4Dtgdt. s5d

The integral in Eq.s5d can be solved exactly in terms of
the exponential integral function Eisyd, defined as

Eisyd =E
y

` e−u

u
du. s6d

The solution for a continuous point source in two dimensions
is then

psx,z;td = Asx,z;td o
n=−`

+`
1

4pD
FEiSx2 + fs2n + 1dW− zg2

4Dt
D

+ EiSx2 + s2nW− zd2

4Dt
DG . s7d

We now use this result to obtain the appropriate expres-
sion for the concentration profile of the diffusing particles in
the same geometry but in the presence of a continuous sink
strapd instead of a source. This expression, which will be
denoted byPsx,z; td, should be normalized so that there are
no particles at the trap boundary, while there is a certainty to
find particles far away from the trap. This condition, which
formally reads

Psx,z;td = H0, sx,zd = s0,0d,

1, x @ 1 or z@ 1
J s8d

implies that the final, normalized expression for the concen-
tration profilePsx,z; td is

Psx,z;td = 1 −

o
n=−`

+` FEiS x2 + fs2n + 1dW− zg2

4Dt
D + EiS x2 + s2nW− zd2

4Dt
DG

o
n=−`

+` FEiS x2 + fs2n + 1dW− zg2

4Dt
D + EiS x2 + s2nW− zd2

4Dt
DG

sx,zd=origin

, s9d

where the denominator of the right-hand-side term is just the
reciprocal of the normalization factorAsx,z; td introduced
earlier, and is based on the numerator evaluated at the origin.
This expression fulfills the boundary conditions of Eq.s8d. In
fact, due to the singularity of the Exponential Integral func-
tion Eisyd at the originy=0, substitutingsx,zd=s0,0d will
cause the expression to diverge at then=0 term. Therefore,
one must introduce a cutoff at some finite size of the point
trap. In further investigation we will usesx,zd=s1,1d as the
cutoff boundary for numerical calculationssin units corre-
sponding to pixelsd.

The nature of the expressions9d can be best understood
through the expansion of the exponential integral function,
given as

Eisyd = − g − lnsyd + y + shigher order terms ofyd,

s10d

where g=0.577 21. . . is Euler’s constant. As can be seen
from Eq. s9d, all arguments of the exponential integral func-
tions obey a standard, 1D diffusion scalingslength2, timed.
Equations10d shows that this scaling is dominantsthe posi-
tive term “y” d, but it also appears in the argument of a loga-
rithmic function flnsydg, which is a typical two-dimensional

singularity. So the slab profiles are a “mixture” of typical 1D
and 2D behaviors. The one-dimensional is asymptotically
dominant, but there is a two-dimensional logarithmic correc-
tion, affecting primarily the short-time behavior, before the
slab boundaries start to play a role in the kinetics.

In order to plot graphs of the theoretical profile functions
in Eq. s9d, we choose parameters that can be directly com-
pared to the experimental data. The diffusion coefficient of
the fluorescein in water is 4.37310−10 m2 s−1 f16g. Since
each pixel in the experiment corresponds to 6.5310−6 m, the
diffusion constant is equivalent to 10.3 pixel2 s−1. This
implies thatDt can be expressed infpixel2g by multiplying
the time ssecondsd by a factor of 10.3. Thus the
times t=1,11,40,160,630,1900ssd are equivalent to
Dt=10,113,412,1648,6489,19 570spixel2d in Eq. s9d. The
total slab width is an order of 160 pixels, ranging from −80
sactually −77d to +80 sactually +77d pixels. Thus, in the fol-
lowing calculations we have substituted theW=160 in Eq.
s9d. In addition, a numerical investigation of Eq.s9d indicates
that the three termsn=−1,0,1 in theinfinite series are actu-
ally sufficient for convergence, in most of the relevant pa-
rameter range.

In Fig. 6 we plot the parallel and perpendicular profiles,
Psx,td=Psx,z=1;td and Psz,td=Psx=1,z; td, respectively,
for the above-mentioned parameters, in a time range of up to
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1900 s, as in the experiments. This figure resembles remark-
ably well the corresponding experimental Fig. 4, having all
the qualitative features discussed above. The vertical dashed
lines in Fig. 6 represent the actual finite-sized boundaries of
the trap. This is since the analytical expressionfEq. s9dg can
only describe the concentration profile of the diffusing par-
ticles outsidethe trap. This has been discussed in detail in
our earlier studies in two dimensionsf2,3,11g. In Fig. 7 we
plot theu distances, similar to the experimental Fig. 5. They
exhibit a very good agreement. Bothu distances start with
2D nonuniversaltu/2, thereafter crossing over to the 1Dt1/2.

In order to gain better insight on the asymmetrical nature
of the concentration profiles, we compare the two orthogonal
profiles in Fig. 8. Figure 8sad compares the experimental
profiles, plotted using some selected profiles from Fig. 4,
while Fig. 8sbd does the same for some theoretical curves
plotted in Fig. 6. One can clearly see the effect of the bound-
ary to diminish the perpendicular profile near the slab bound-
aries. This explains that our findings regarding the similar
behavior of bothu distances measured from the trap result
from the simple observation that the region where the per-
pendicular profile bends down is invisible to this depletion
measure.

The vertical lines in Fig. 8 represent the actual trap size in
the experiment. In the experimental system the trap radius

FIG. 6. Theoretical results of the concentration profiles along a
pixel line sad parallel,Psx,td, and sbd perpendicular,Psz,td, to the
slab length, calculated using Eq.s9d. The time range is from 1 s to
1900 s. The vertical solid lines represent the slab boundaries, while
the vertical dashed lines represent the trap size in the experiment.

FIG. 7. Theu distance vs time foru=0.2, 0.4, 0.6, and 0.8 from
the theoretical data in Fig. 6. The circles represent theparallel u
distance measured from Fig. 6sad and the crosses represent theper-
pendicularu distance from Fig. 6sbd. Both distances demonstrate a
similar time scaling behavior for a givenu value until they reach the
slab boundary, including a crossover from the initial 2D behavior
stu/2d towards a 1D scalingst1/2d.

FIG. 8. The concentration profiles along a parallelssolid linesd
and a perpendicularsdotsd directions, plotted using some selected
profiles att=1, 40, 160, 630, and 1900 s fromsad the experimental
curves in Fig. 4;sbd from the theoretical curves in Fig. 6. The
vertical lines represent the actual trap size in the experiment.
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si.e., the laser beam widthd is 5 pixels. The shape of the
reactant concentration profile within this region has been dis-
cussed in detail inf2g. Nevertheless, the theoretical deriva-
tion, which assumes a point trap, agrees very well with the
experimental profiles outside the finite-size trapping region.

It is interesting to compare the two orthogonal profiles
through their ratio. Let us define the ratio,Rsx,td, as

Rsx,td =
Psz= x,td

Psx,td
s11d

or, for the experimental system, as

Rsx,td =
C'

Ci

. s12d

In Fig. 9, we plot the experimentalsad, as well as the
theoreticalsbd ratios, for our system. It shows that, as time
evolves, the deviation of the perpendicular profile from the
parallel one increases. The agreement between the theoretical
and the experimental ratios is evident.

The dimensional crossover of the depletion zone induced
by the geometric confinement of the reaction space implies a
crossover time that scales with the width of the reaction
space. Previous workf13,14g has shown that the Einstein
diffusion law correctly describes the crossover times for the
onset of finite size effects in regular 1D, 2D, and 3D lattices.

On the other hand, the Monte Carlo studyf15g of the dimen-
sional crossovers from 2D or 3D to 1D on baguette-like lat-
tices for A+A and A+B reactions, with random initial con-
dition, shows that the scaling of the crossover time with
respect to the lattice width deviates significantly from the
Einstein diffusion law and produces exponents ranging be-
tween 1 and 4, instead of an expected value of 2, depending
on the lattice dimensionality and the reaction type. To deter-
mine if this law is relevant to the scaling of the crossover
time against the width of the slab geometry, we must define
the crossover time.

There are many different ways to determine the crossover
time. One reasonable choice is the time when theu distance
has deviated from the two dimensional trajectory. The result
for this choice, denoted bytc, is shown in Fig. 10sad for
several slab widths, as obtained from the theoretical expres-
sions. The slope of 2.03 confirms the Einstein’s Law predic-
tion.

Another possible choice for the crossover time exploits
our profile ratio analysis. One can look at the slab boundary
distancesx=W/2d for the timets at which the ratio starts to

FIG. 9. The concentration profile ratios,Rsx,td, at t=1, 11, 40,
160, 630, and 1900 s forW=160 from sad experiment andsbd
theory.

FIG. 10. sad Crossover times,tc, for different slab widths at
W=10, 20, 40, 80, 160, and 320, from theu distances atu=0.8,
measured from the theoretical curves similar to Fig. 6.sbd The time
ts at which the ratio at the boundary,Rsx=W/2 ,tsd, is equal to 0.99
and 0.999, for several slab widths. The slopes confirm the Einstein
diffusion law.
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deviate from 1, i.e., where the perpendicular profile begins to
split from the parallel concentration profile. This is shown in
Fig. 10sbd, where we have plotted the timests at which the
ratio at the boundary,Rsx=W/2 ,tsd, is equal to 0.99 and
0.999, for several slab widthsW. Here again, as in Fig. 10sad,
the slopes are around 2, as expected.

IV. SIMULATIONS

A. Methods

1. Monte Carlo simulations

Monte Carlo simulations were performed on a 2013W
sW=5, 7, 9, 11, 15, 21, 31, and 51d rectangular lattice, and a
single point trap was put at the center of this lattice. Particles
with an initial concentrationc0=0.25 are randomly generated
on the lattice at a time step zero. No more than one particle
is allowed to occupy a given site at any moment, i.e., we use
the excluded volume principle. Particles are allowed initially
to land both inside and outside the trap, randomly.

The diffusion is modeled by random walks of all particles,
which are independent of each other. If a particle is chosen to
move to a site that is already occupied by another particle,
this move is not allowed and the particle remains at its origi-
nal site for that time step. The trap is characterized by a
trapping probability, p. This parameterp signifies the
strength by which trapping may occur, and it varies from
p=0.0 sno trapping at alld to p=1.0 sparticle is always irre-
versibly trappedd. Thus, each time that a particle moves into
the trap site, the trapping probabilityp is compared to a new
random number, leading to irreversible trappingsand re-
moval from the systemd, or continuation of the diffusion pro-
cess.

Cyclic boundary condition was used at the edges of the
long dimension of the lattice, while reflective boundary con-
dition was used at the edges of the short dimension of the
lattice. However, we note that the cyclic and reflective
boundary condition produce the same result in this particular
case. The quantity monitored is the number of particles at a
distancer from the originsi.e., from the trap sited. Since we
use a discrete 2D lattice topology, the quantityui u+ u j u is used
as the value ofr, for the position atsi , jd on the lattice. For a
fixed time step, we count the total number of particles at
each distance on the lattice. Then the number of particles is
normalized into the concentration, using the total number of
lattice sites at a given distancer, to measure theu distance.
The data are the average of 100 000 runs. For all simulations,
the reactant profiles were followed from 1 up to 10 000 time
steps.

2. Exact enumeration

We also ran exact enumeration usingMATLAB . Similar to
what we described previouslyf1–3g, the principle is that, at
any time, the concentration of any position is determined by
the concentration of its nearest neighbors at the previous
time step, that is, the concentration of any site on the square
lattice at timet is one quarter of the sum of the concentra-
tions of its four nearest neighbors at time stept−1. The
boundary condition is reflective. In our previous workf1–3g,

we increased the size of the matrix for the concentration by
one after each time step. In this work, in order to extend the
time range, we increase the size of the concentration matrix
only when the boundary values have 0.0001% change from
the original value. By doing this, we can extend the time
steps from 1000 to 50 000, which is needed to investigate the
asymptotic regime, within a reasonable calculation time. As
before, since the matrix size is not preset, we can consider
that the lattice has an infinite length.

B. Results

The Monte Carlo simulation results for a system of a
point trap with a trapping probabilityp=0.5 on a 201321
rectangular lattice are shown in Fig. 11. Theu distance
shows almost perfect overlap between parallel and perpen-
dicular directions for a givenu value in this figure, matching
well with the experimental and theoretical results. At
u=0.4, 0.6, and 0.8, theu distance follows the previously
observedf2,3g two-dimensional behavior for the time range
up to ,200 steps, after which it experiences a sharp cross-
over to a higher slope, typical of a 1D-like behavior, just like
the experimental results in Fig. 5 and the theoretical results
in Fig. 7. At u=0.2, theu distance starts with a two dimen-
sional fast-growing, early-time behavior for theu distances
smaller than 1 lattice unit, which is the upper limit of the trap
radius, and then switches directly to the one dimensional
asymptotic behavior oft1/2, without experiencing the previ-
ously observedsfor the exact two-dimensional cased regime
of slow growthf2,3g. This behavior is similar to the case for
u=0.4 of the experimental results in Fig. 5.

It is worth pointing out that the slopes in the long time
range in Fig. 11 are somewhat higher than the theoretically
predicted asymptotic value of12 for the u values at 0.4, 0.6,
and 0.8, after the crossover from the two-dimensional behav-
ior starts to happen. This is also consistent with the experi-
mental and the theoretical results. As shown in Fig. 12sad, the

FIG. 11. Theu distance vs time atu=0.2, 0.4, 0.6, and 0.8 from
a Monte Carlo simulation for a point trap system. The lattice size is
201321 and a point trap with a trapping probabilityp=0.5 is lo-
cated at the center of the lattice. The simulation data resemble well
the experimental results shown in Fig. 5 and the theoretical results
shown in Fig. 7.
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slope higher than12 seems to appear only temporarily, during
the transition from 2D to 1D, according to the Monte Carlo
simulations. This suggests that the theoretical 1D slope of1

2
should have eventually been recovered in Figs. 5 and 7, had
the u distance been monitored over a longer time range. The
exact-enumeration results for the longer time range up to
50 000 time steps, as shown in Fig. 13, also clearly show the
asymptotic 1D slope of12 for theu distance along the parallel
direction, as predicted.

In order to examine the width dependence of the dimen-
sional crossover, Monte Carlo simulations were carried out
for the point trap system on a 2D rectangular lattice with
different lattice widths. Figure 12sad shows theu distance in
time at u=0.8 from Monte Carlo simulations for a system
with a perfect point trap located at the center of the two-
dimensional rectangular lattice of size 2013W, where the
width of the latticeW is varied overW=5, 11, 21, and 51.
The two straight dashed lines represent the theoretical

asymptotic slope of12 for 1D and that ofu /2 si.e., 0.4 in this
cased for 2D. A crossover from 2D to 1D occurs for all dif-
ferent widths. As mentioned earlier, it reproduces the transi-
tion slopes, higher than12, for all lattice widths, right after the
onset of the crossover from the 2D to 1D behavior. These
high slopes eventually converge to1

2 in the long time limit
for the smaller widths atW=5 and 11, while for the bigger
widths atW=21 and 51 they appear to approach the slope of
1
2 towards covergence in later times. It also shows that the
crossover occurs at different times for different widths. The
crossover times,tc, measured as the point at which theu
distance has deviated from the two dimensional trajectory by
a small fixed values0.01 in this cased for u=0.8 from Fig.
12sad, as well as for otheru values ofu=0.2, 0.4, and 0.6, are
plotted in Fig. 12sbd against the distance from the trap to the
lattice boundary,sW−1d /2. The crossover times do scale

FIG. 12. sad The u distance in parallel direction vs time at
u=0.8 from Monte Carlo simulations for a system with a perfect
point trap located at the center of a two-dimensional rectangular
lattice of size 2013W, with W=5, 11, 21, and 51. The deviation
from two-dimensional behavior occurs later in time for a bigger
lattice width. sbd Crossover time vs distance from the trap to the
lattice boundary,sW−1d /2, for different lattice widths, atu=0.2,
0.4, 0.6, and 0.8. The crossover time scales astc,W2, as expected
from Einstein’s diffusion law.

FIG. 13. Theu distance vs time atu=0.2, 0.4, 0.6, and 0.8 from
exact enumeration for a point trap system. The lattice is infinitely
long with a width of 15, and a point trap with a trapping probability
p=1 is located at the center of the lattice.

FIG. 14. Theu distance atu=0.8 in parallel direction vs time for
a slab widthW=15 from the exact enumerationsssd and the Monte
Carlo simulationss3d. A point trap with a trapping probability
p=1 is located at the center of the lattice. The data from the two
approaches agree with each other very well, over the entire time
range, thus suggesting that any potential correlated diffusion effects
in the Monte Carlo calculations are negligible.
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simply astc,W2, suggesting that the Einstein diffusion law,
with respect to the width of the slab geometry, is relevant to
the scaling of these crossover times for the growth of deple-
tion zones around a trap.

The use of the excluded volume principle, combined with
an initial concentration as high as 0.25, may suggest the
possibility of correlated diffusion effects in our Monte Carlo
simulations. Such a possibility can be tested by comparing
the results from the Monte Carlo calculations with those
from the exact enumeration method, as the latter should not
exhibit any correlation effects. The comparison is shown in
Fig. 14. It shows that theu distances in the parallel direction
at u=0.8, for a slab widthW=15, derived from the two dif-
ferent approaches, do agree very well over the entire time
range.sOnly a small deviation occurs at au distance near
100, which is at the boundary of the 201315 square lattice
in the Monte Carlo calculation, where the extra depletion
occurs as explained above.d This result strongly suggests that
any possible correlated diffusion effects are absent, or at
least negligible, in the presented Monte Carlo calculations.

V. SUMMARY

We present the study of the growth of a depletion zone
around a single point trap located in the middle of a flat
microchannel having a slab geometry, using various meth-

ods: experiment, theory, Monte Carlo simulation, and exact
enumeration. We observe how theu distance scales with time
in two orthogonal directions, parallel with and perpendicular
to the long axis of the slab, as the reaction progresses. At the
very beginning, theu distance scales anomalously astu/2, as
expected for 2D geometry. Then, when the particles feel that
the system is not strictly two dimensional, theu distances in
both parallel and perpendicular directions deviate fromtu/2.
The crossover time is proportional to the square of the slab
width, according to Einstein’s diffusion law. Theu distance
in the perpendicular direction increases faster than the coun-
terpart in the parallel direction. This is because of the dimin-
ished supply of particles to the regions very close to the
boundary. At last, after a region of faster increase ofu dis-
tance sthe power is greater than12d, the u distance finally
scales witht1/2 as we would expect from 1D geometry. The
ratio of the concentration profiles in the two orthogonal di-
rections provides another means to look at the crossover
characteristics in this restricted, low-dimensional geometry.
Our experimental, theoretical and numerical methods agree
very well with each other.
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