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Depletion kinetics in the photobleaching trapping reaction inside a flat microchannel
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The diffusion-limited kinetics of the growth of a depletion zone around a static point trap in a thin, long
channel geometry was studied using a laser photobleaching experiment of fluorescein dye inside a flat rectan-
gular capillary. The dynamics of the depletion zone was monitored by tistance, defined as the distance
from the trap to the point where the reactant concentration has been locally depleted to the specified survival
fraction(6) of its initial bulk value. A dimensional crossover from two dimensions to one dimension, due to the
finite width of the reaction zone, was observed. We define a “parallel” and a “perpendiéuetance, along
the slab long and short dimensions, respectively, and study their time development as a means to study the
asymmetrical nature of the slab geometry. For &aNalues, the crossover occurs concurrently for béth
distances when the depletion zone touches the boundary for the first time. We derive theoretical expressions for
this geometry and compare them with the experimental data. We also obtain important insight from the ratio of
the reactant concentration profiles in the parallel and perpendicular directions. Exact enumeration and Monte
Carlo simulations support the anomalous depletion scaling results. Nevertheless, the crossdver isnséill
found to scale with the widttiw) of the rectangular reaction zone as~W?, as expected from the basic
Einstein diffusion law.
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I. INTRODUCTION variety of dynamic quantities. For example, the nearest

In a series of recent papefs—3] we have addressed the neighbor distance was found to increase asymptotically as
Y4 in one dimensior(1D) [7,8] and (Int)2 in two dimen-

issue of the anomalous depletion zone of Brownian particIeE_ 3 ) k
around a static trafpoint trap and finite-sized trapperfect ~ Sions(2D) [9-11], while the trapping reaction's global rate
and imperfect, in one and two dimensions, as a means 43S Shown to decrease asymptoticallytaé” in 1D [7,8]
study photobleaching and other “trapping” dynamics in low@"d(In )™ in 2D [10,11, wheret is the time elapsed since
dimensions. Because of the sensitivity of anomalous kinetic§Witching-on of the trap.

to the spatial dimensionality of the systd-15], we ex- A quantity relevant for the description of the depletion
tend, in the current work, our earlier studies to study theZone is the so-called distance(r), which is the distance
typical geometry of a flat microchannel. from the trap to the point where the local concentration of

It has been well established that the kinetic laws for reacSurviving A particles, c(r,t), reaches the specified survival
tions in a diffusion-limited environment are considerably dif- fraction 6 (0< #<1) of its value in the bulk, [9,10], i.e.,
ferent from the conventional rate laws, due to the spatial
correlations of the reactants, originating from the ineffi- c(rpt) = 6c,. (1)
ciency of the diffusive mixingl4—12. One of the simple
cases of the diffusion-limited reaction is the trapping reactionrhe ¢ distance has been shown, by theptg] and experi-
A+T—T, whereT is a static trap ané is a diffusing species ment[1], to increase asymptotically @&2 in 1D. The /2
that may be annihilated upon collision with the trap, dependgependence in 1D is explained on the basis of diffusion of
ing on the trap strength. The trapping reaction in a diffusionparticles towards the trap. In two dimensions, though, ¢he
limited environment is closely related to a variety of pro- gistance has been shown theoretically to behave in an
cesses, such as electron-hole trapping and recombinatiognomalous manner, exhibiting a nonuniveté&lbehavior in
exciton trapping, soliton-antisoliton recombination, phononthe jong-time limit[9-11]. These results have been recently
upconversion, free radical scavenging, electrolysis, etc. IRonfirmed experimentallf1-3]. In [1-3] we have used a
many cases, the process occurs in low dimensional systemsele-Shaw cell, 150 micron thick, in order to produce both
such as pores, filaments, microcapillaries, or thin moleculapne-dimensional (“line trap” [1]) and two-dimensional
wires[6]. The occurrence of-T reactions creates a zone of (“noint trap” [2,3]) systems. This experimental design al-
depletion around the trap, which is a form of self-segregationowed us to measure the temporal changes in the spatial dis-
of reactants. The growth of the depletion zone in the trappingribution of the reactants at the trap vicinity, and then to
reaction in low dimensions leads to anomalous kinetics for nalyze the dynamics of the depletion zone through @the

distance measure. In addition, an interesting short-time be-

havior has been observed, in particular in two dimensions.
*Electronic mail address: kopelman@umich.edu The effects of the finite size and the shape of the trap have
"Electronic mail address: haimt@mail.biu.ac.il been studied as well.
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In this paper we study the depletion zone formed in two- 480 nm filter Xe lamp

dimensional slablike geometry for a single point trap, located o )
in the middle of the slab. Such a confined geometry interpo- ~ FIG- 2. A schematic diagram of the experimental setup.
lates between 2D and 1D dimensionalities, thus allowing one An aqueous solution of fluorescein was prepared in a

to examine the dimensional crossover behavior. . phosphate buffer solution @H 8.5 with a concentration of
The (_axpenm_ental manlfestatlon (_)f the slab geometry is & gw 1075 M. Spectroscopic grade fluorescein dye was pur-
flat capillary (Flg._ 1. The capillary is 50 mm Iong_, Of_ the chased from Aldrich and used without further purification.
order of 1 mm wide, and 0.1 mif100 «m) thick. This sizé  The puffer solution was used to increase the solubility of the
suggests that this capillary is primarily a quasi-one-fiyorescein as well as to prevent any potengiell change of
dimensional object. However, since the width and the thickthe solution during the photobleaching process. The aqueous
ness differ by an order of magnitude in size, this capillaryfjyorescein solution was injected into the capillary using a
can be considered as a quasi-two-dimensional object, thl{g]ass pipette. After the sample injection, the capillary was
allowing us to study experimentally a possible dimensionakealed with epoxy to prevent the evaporation of the sample
crossover between the local two-dimensional geometry angg|ution during the data acquisition.
the one-dimensional dominant shape of the capillary. The schematic diagram of the experimental setup is
It should be noted that, in such a geometry, careful conshown in Fig. 2. A 488-nm laser beam out of an air-cooled
sideration should be given to the proper definition of thear.jon laser(lon Laser Technology, model no. 5490AWG;-0
depletion zone(i.e., the ¢ distance, as one no longer has introduced from above the capillary, is focused at the center
either the radial symmetry of the two-dimensional case, 0bf the rectangular capillary to photobleach the dye mol-
the trivial geometry of the one-dimensional case. We havecyles, producing a circular trap cross section on the 1 mm
therefore measured the depletion zone along the two extremg 50 mm sample plane. The output power of the laser beam
possibilities. The first igarallel to the slab length and the \yas 16 mW and the diameter of the beam at the focus on the
other isperpendicularto this direction, which is the shortest sample plane was approximately fBn. Another light
possible direction, limited by the slab width size. source at 480+5 nm with approximately 1 in diameter, a Xe-
We have also looked at the shape of the profiles alongon arc lamp(Sutter Instrument Company, model: Lambda
these two orthogonal lines, in order to gain more insight ODG-4), located below the capillary, was used to probe the
the asymmetrical nature of the diffusion in the presence of Progress of the photobleaching. The power density of the
point trap in the slab geometry. In particular, we have studieghrope beam is less than 0.1% that of the photobleaching laser
the ratio of these quantities and its dimensional crossovekeam, so the effect of photobleaching by the probe beam is
characteristics. _ _ negligible during the typical time scale of the experiment.
The paper is organized as follows: In Sec. Il we describg=yrther protection of the sample from the probe beam was
the experimental methodology and the experimental resultgrovided by two mechanical shutters installed in front of the
In Sec. Il we derive theoretical expressions for this systenight sources. The two shutters operate out of phase to each
and compare them with the experimental data. In Sec. IV Weyther, so that either the photobleaching beam or the probe
present simulation data performed using two methodspeam illuminates the sample alternately in time, which mini-
Monte Carlo simulations and exact enumeration. Finally, wemijzes the exposure of the sample to the probe beam.

summarize the work in Sec. V. The images of fluorescence emission from the sample
were collected during the photobleaching at different times,
Il. EXPERIMENT using a CCD cameréRoper Scientific, model: Photometrics

Cool Snap E$ equipped with a macro len&Nikon, AF
Macro 60 mm 2.8, 1:L The image is 4.%X 3.3 mnf? in size,
The experiment is the laser photobleaching of fluoresceinvith a 695x 518 pixel resolution and a 14-bit intensity reso-

dye molecules in an aqueous solution. The fluorescein diftution. This produces an approximately u8n/pixel spatial
fuses in water with a diffusion coefficient of 4.37 resolution. Typical integration time of the CCD was 300 ms
x1019m?s™? [16]. The photobleaching reaction occurs for each image. The dye molecule becomes invisible from
within the laser focus, inside a thin, long rectangular glasshe detector when photobleached, resulting in the intensity
capillary with dimensions 0.1 mix1 mmXx50 mm(Fig. 1). drop in the fluorescence image.

A. Methods
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FIG. 3. Fluorescence images from a point trap experiment at 02t
selected times ofa) 1 s, (b) 160 s,(c) 500 s, andd) 1500 s, show- ‘ ‘
ing the progress of the photobleaching of an aqueous fluorescein 0.0y 100 200 300 400 500
solution inside a rectangular capillary. The bright vertical band rep- (b) Position (pixels)

resents the capillary and the dark region in the middle of the capil-

totrap in time. time from a point trap experiment, along a pixel lit@ parallel,

and (b) perpendicular to the channel, as defined in Fi@).3The

. . time range is from 1 s to 1900 s. The solid vertical lines represent
The progress of the photobleaching was monitored up t(alqe widtr? Ofl the capillary channel G verticat P

1900 s in the typical experiment. The entire experiment is

performed at room temperature. A similar experimental setup

has been used recently to study the trapping reactions ipymmetry for this geometry. For example, g decreases
effective 1D and 201-3]. to just below 0.6 at the distance corresponding to the width

of the capillary during the given time period of 1900 s, while
the C, decreases to as low as0.45 at the boundary of the
capillary during the same period of time.

Figure 3 shows a series of the fluorescence images at The reason for this behavior in the perpendicular direction
t=1s, 160 s, 500 s, and 1500 s from a point trap experimemear the boundary is the effect of a diminished supply of
inside a rectangular capillary, illustrating the progress of thaliffusing particles near the boundary. Qualitatively, the par-
photobleaching in time. The bright vertical band in theticle concentration in a region at a certain time is determined
middle of the image represents the reaction channel in thby the combination of the flux into and the flux out of the
rectangular capillary. The dark region, growing in the middleregion at that time. With a trap in the middle of a space
of the reaction channel, reflects the depletion zone develograving a dimension lower than 3, the flux into a region,
ing around the phototrap. We note that the radial symmetrjocated in the interior part of the space outside the trap, is
of the concentration profile, observed in normal 2D pointsmaller than the flux out of the region at a given time. This is
trap system$2,3], does not exist in the current rectangular because the particles can diffuse out of the region freely,
capillary system, due to the narrow width of the reactionwhile the trapping process permits fewer particles to diffuse
channel. Hence, to examine the possible directional deperack into the region. This results in a concentration gradient
dence of the growth of the depletion zone around the poinaround the trap and the development of a “normal” concen-
trap, we extracted the fraction profiles of the local reactantration profile. However, when the region is at or near the
concentrations along the two separate pixel lines, paralldboundary of the space, the flux out of the region towards the
(C)) with and perpendiculaiC ) to the channel, through the trap is the same as without the boundary, while the flux into
center of the phototrap, as shown in Figa)3 No evidence the region is reduced further than without the boundary, be-
for convection was seen, and the comparison of the resultsause there is less or no reservoir space to supply particles
below with purely diffusional theoretical models is consis- between the region and the boundary. This results in a faster
tent with a convectionless reaction process. drop in the particle concentration near the boundary.

The time evolutions of the two fraction profile€; and Each ¢ distance was measured directly from the profiles
C,, along the two pixel lines, are shown in Fig. 4. The timein Fig. 4, and is presented in Fig. 5 as a function of time. The
ranges for both profiles in Fig. 4 are identical, from 1 s up to# distance in the parallel and perpendicular direction is de-
1900 s. Two solid vertical lines in each plot indicate thenoted asr(,” andr,*, respectively. The solid straight lines
width of the rectangular capillary. A close comparison be-correspond to the theoretical asymptotic sIop(—‘-écfbr 1D
tween the two profiles shows that they indeed develop difand the dashed straight lines represent the theoretical slopes
ferently in time, as expected from the absence of a radiabf #/2 for 2D. The boundary of the capillary width is located

B. Results
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tances for all threed values are still far away from the
boundary at this time. In other words, thelistance seems to
“feel” the boundary of the reaction space well before it ac-
tually reaches this boundary. This is equivalent to the “res-
ervoir” depletion effect discussed above. Once dltistance
actually reaches the boundary of the capillarfj'/,continues

to cross over to a high-slope, 1D-like behavior, whilg
simply vanishes. It is somewhat surprising thﬁiwhich has

no direct contact with the boundary over the entire process,
changes the dynamics from 2D to 1D almost simultaneously
with r,~, which has a direct interaction with the boundary. It
seems to imply that the boundary information is communi-
cated betweem, andr,* in real time. Actually, the higher
parallel concentration profile compensates for the decreased
perpendicular profile.

100+ 5 1 Reactor
[ boundary

r, (pixel)

time (s)

FIG. 5. The# distance vs time fov=0.4, 0.6, and 0.8 from a
point trap experiment. The solid squares') represent the) dis- Ill. THEORY
tance measured from Fig(a} and crosse& ,ﬁ) from Fig. 4b). The ’

r,/ andr,* demonstrate a similar time scaling behavior for a given  The slab geometry is sketched in Fig. 1. The length is
6 value until they reach the boundary of the capillary, after whichmeasured along the long coordinateand the width coordi-
r, continues to grow while ;> simply vanishes. nate isz, ranging fromz=-W/2 to z=+W/2 (W being the

total width of the slah The trap is located dix,z)=(0,0).
at a distance of-77 pixels from the trap center, and the trap  The analytical solution for this problem is based on the
radius is~5 pixels, as can be obtained using the conversiorsolution for diffusion inside an infinite three-dimensional re-
factor of 6.5um/pixel described in the above Methods sec-gion bounded by two parallel planesz0 andz=W, sub-
tion; both are indicated by dotted horizontal straight lines inject to a unit instantaneous source of particles at a given
Fig. 5. An immediately noticeable feature in Fig. 5 is thét point (Xg,Yo,2) at time 7=0 [17]. Assuming that the two
andr," for a given ¢ value follow very similar dynamic poundaries satisfy reflecting boundary conditions, i.e., par-
pathways for most times. This is since the difference in theitjcles that reach these boundaries are reflected back inside
concentration profiles occurs only near the slab boundary, age slab, the concentration profile of the particles anywhere
pointed out earlier. Specifically, @=0.6 and 0.8, botlt,’ inside the slab at time, is given by[17]
andr,* follow the intermediate-time behavior observed be-
fore in 2D [2,3], characterized as being slower than the 1
asymptotic scaling of?2, during the initial~200 s. In the ~ PXY:Zi7) = 8(7D )%
case off=0.4, one can see the typical early-time, high slope
inside the trap domain, which is also consistent with the +e'(2“W-Zo-Z>2/4Df]_ 2
previous study2,3]. _ _ ) _ _

At around 300 s, both,' andr,*, still coupled together, For a two-dimensional region with symmetrical boun-
start to deviate from the 2D behavior, crossing over into &1aries around a source at=0, i.e., boundaries at
higher slope regime, seemingly approaching the 1D-like be?=(~W/2,W/2), they coordinate is omitted and the expres-
havior at the long-time limit. This result indicates that the Sion (2) reduces to

+oo
_(x2+y2)/4DT E [e—(2nW+ zy- 2)2/4DT

n=-o%

dynamics of the growth of the depletion zone goes through a 1 +00
dimensional crossover from an early-time 2D behavior to a p(X,z;7) = g X407 > [el@n+ YW - Z1%/4D7
long-time 1D behavior in both parallel and perpendicular 4aDr n=—c

directions in the rectangular capillary. The dimensional
crossover is induced by the geometric constraint of the reac-

tion space. After a slow growth of the depletion zone in the |, order to account for the cumulative effect of a continu-
early-time range, the long and narrow channel shape of thg s source up to timé, one must consider a continuous

rectangular capillary drives the depletion zone to grow at thgequence of instantaneous sources at all times in the interval
faster 1D rate, once the geometric constraint from the narroyiy 1], This is equivalent to integrating with respect to the

width of the capillary takes over. The faster concentration; .« \ariabler of Eq. (3)
decay along the perpendicular direction near the boundary of ’
the capillary, due to the diminished supply of reactant, dis- Jt e

+ e—(2nW— 2)2/4D7-]_ (3)

cussed above, appears to have little effect on the overallp(X,z;t) = A(x,z;t) 2D X107 3 [erln+ DW= 2%4Dr
dynamics of thed distance. Its effect seems to be limited to o AmLT n=-
the close proximity of the reactor boundary, whege be- + e (W= 2)2/4Dr]d7_ (4)
comes bigger than, for #=0.6 and 0.8 in Fig. 5. '

We also note that the deviation of ti#edistance from the Wwhere an amplitude functiof(x, z;t) has been introduced in
2D pathway starts to set in at300 s, although th@ dis-  order to be able to normalize the result in accordance with
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the boundary conditions of our two-dimensional trapping oo 2 +[(2n+ HW- Z]2
system. Interchanging the order of summation and integra- p(x,z;t) = A(x,z;t) >, E'< )
tion, we obtain =z 47D 4Dt
2 2
X“+ (2nW-2z
+ e Eremw-2?)) o
(1 214D [ o{(2n + W - Z]%/4D !
X,Z;t) = A(X,z;t ——e X7 [e” - T . . .
p( )=A )nzz_oc o 4mD7 [ We now use this result to obtain the appropriate expres-
5 sion for the concentration profile of the diffusing particles in
+ g (MW= 2B, (5)  the same geometry but in the presence of a continuous sink

(trap) instead of a source. This expression, which will be
denoted byP(x,z;t), should be normalized so that there are
no particles at the trap boundary, while there is a certainty to
find particles far away from the trap. This condition, which

The integral in Eq(5) can be solved exactly in terms of
the exponential integral function &, defined as

jw gu formally reads
Ei(y) = —du. 6
v y U © 0, (x2=(0,0,
P(x,z;t) = (8
1, x>1orz>1
The solution for a continuous point source in two dimensionsmplies that the final, normalized expression for the concen-
is then tration profileP(x,z;t) is
|
+oo X*+[(2n+ HW - Z]? X2+ (2nW-2)?
> | Ei +E| ———
=== L 4Dt 4Dt
P(x,z;t)=1- , 9
+oo X2 +[(2n+ )W -z X2+ (2nW- 2)?
> | Ei +E| ——
= 4Dt 4Dt (x,2)=origin

where the denominator of the right-hand-side term is just theingularity. So the slab profiles are a “mixture” of typical 1D

reciprocal of the normalization factok(x,z;t) introduced and 2D behaviors. The one-dimensional is asymptotically
earlier, and is based on the numerator evaluated at the origifominant, but there is a two-dimensional logarithmic correc-
This expression fulfills the boundary conditions of E8). In  tion, affecting primarily the short-time behavior, before the

fact, due to the singularity of the Exponential Integral func-slab boundaries start to play a role in the kinetics.

tion Ei(y) at the originy=0, substituting(x,z)=(0,0) will In order to plot graphs of the theoretical profile functions

cause the expression to diverge at the0 term. Therefore, 1N Ed- (9), we choose parameters that can be directly com-
one must introduce a cutoff at some finite size of the poin ared to the experimental data. The diffusion coefficient of

. T : - he fluorescein in water is 4.3710°m?s™ [16]. Since
tratp.ﬁlnbfurtr(ljer ln;/estlgatlor) Wle WII" Llls(?(’?_(l ,'tl) as the each pixel in the experiment corresponds toX6°® m, the
cutolt boundary Tor numerical calcuiation® units Corre- git,sion  constant is equivalent to 10.3 piketl. This
sponding to pixels

- D s
The nature of the_ expressidf) can b_e b_est understoqd It?ep “?ismtg a;cSDethigbbebsxp;es}Zi?OFp|>(§$I ]18.}/3.rm#]%|gln?he
through the expansion of the exponential integral functionyjes t=1,11,40,160,630900(s) are equivalent to
given as Dt=10,113,412,1648,6489,19 57pixel) in Eq. (9). The

total slab width is an order of 160 pixels, ranging from —80

(actually =77 to +80 (actually +77 pixels. Thus, in the fol-
(10 lowing calculations we have substituted t#é=160 in Eq.

(9). In addition, a numerical investigation of E@) indicates
where y=0.577 21... is Euler’s constant. As can be seerthat the three terms=-1,0,1 in thenfinite series are actu-
from Eq.(9), all arguments of the exponential integral func- ally sufficient for convergence, in most of the relevant pa-
tions obey a standard, 1D diffusion scalifigngti? ~ time). rameter range.

Equation(10) shows that this scaling is dominafthe posi- In Fig. 6 we plot the parallel and perpendicular profiles,
tive term ‘y”), but it also appears in the argument of a loga-P(x,t)=P(x,z=1;t) and P(z,t)=P(x=1,z;t), respectively,
rithmic function[In(y)], which is a typical two-dimensional for the above-mentioned parameters, in a time range of up to

Ei(y) = - y—In(y) +y + (higher order terms of),
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_ 2 o 1900 s, as in the experiments. This figure resembles remark-
1.0 : : i = ably well the corresponding experimental Fig. 4, having all
: N Z =] it ; i
N - Z ] the qualitative features discussed above. The vertical dashed
0.8 % lines in Fig._6 represent the actu_al finite-sized boundaries of
\ // the trap. This is since the analytical expresdiBn. (9)] can
= 08 ' ' only describe the concentration profile of the diffusing par-
f ticles outsidethe trap. This has been discussed in detail in
0.4 our earlier studies in two dimensiof2,3,11]. In Fig. 7 we
slab plot the 6 distances, similar to the experimental Fig. 5. They
0.2 boundar exhibit a very good agreement. Bothdistances start with
i 2D nonuniversat??, thereafter crossing over to the 2.
0.0 i In order to gain better insight on the asymmetrical nature
-200 -100 0 100 200 of the concentration profiles, we compare the two orthogonal
(@) X (pixel) profiles in Fig. 8. Figure & compares the experimental
- profiles, plotted using some selected profiles from Fig. 4,
10 i while Fig. 8b) does the same for some theoretical curves
! plotted in Fig. 6. One can clearly see the effect of the bound-
0.8 ary to diminish the perpendicular profile near the slab bound-
aries. This explains that our findings regarding the similar
o6 behavior of bothd distances measured from the trap result
o from the simple observation that the region where the per-
a 04 pendicular profile bends down is invisible to this depletion
measure.
The vertical lines in Fig. 8 represent the actual trap size in
0.2 the experiment. In the experimental system the trap radius
0.0 iy
-200 -100 0 100 200
(b) z (pixel)
FIG. 6. Theoretical results of the concentration profiles along a
pixel line (a) parallel, P(x,t), and(b) perpendicularP(z,t), to the y
slab length, calculated using E@). The time range is from 1 s to &
1900 s. The vertical solid lines represent the slab boundaries, while o; 0]
the vertical dashed lines represent the trap size in the experiment. :
0.2
0.0 : : T . . . .
1000 {2 160 180 200 220 240 260 280 300 320
3 o parallel (a) Position (pixel)
X  perpendicular MIM
1004 slab noooo PRKE 10— R
T 1 boundary -
X ]
e =
= N
o
%
o
1 e . . . ; 02| TP
10 100 1000 10000 100000 ]| eeeeees P(z, 1)
Dt (pixel’) 0.0 - - — . . .
-80 60 -40 20 0 20 40 60 80

FIG. 7. The# distance vs time fop=0.2, 0.4, 0.6, and 0.8 from
the theoretical data in Fig. 6. The circles representgaeallel 6
distance measured from Fig(ad and the crosses represent fheg- FIG. 8. The concentration profiles along a para(sslid lineg
pendicular @ distance from Fig. @). Both distances demonstrate a and a perpendiculaidoty directions, plotted using some selected
similar time scaling behavior for a givehvalue until they reach the profiles att=1, 40, 160, 630, and 1900 s frofa) the experimental
slab boundary, including a crossover from the initial 2D behaviorcurves in Fig. 4;(b) from the theoretical curves in Fig. 6. The
(t”2) towards a 1D scalingt'’?. vertical lines represent the actual trap size in the experiment.

(b)

Position (pixel)
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FIG. 9. The concentration profile ratioR(x,t), att=1, 11, 40, 10 100
160, 630, and 1900 s foww=160 from (a) experiment andb) W
theory.

FIG. 10. (a) Crossover timesy, for different slab widths at
(i.e., the laser beam widthis 5 pixels. The shape of the W=10, 20, 40, 80, 160, and 320, from tifedistances a¥=0.8,
reactant concentration profile within this region has been dismeasured from the theoretical curves similar to Figb§The time
cussed in detail if2]. Nevertheless, the theoretical deriva- 7sat which the ratio at the boundai(x=W/2,7y), is equal to 0.99
tion, which assumes a point trap, agrees very well with thé‘_“d Q.999, for several slab widths. The slopes confirm the Einstein
experimental profiles outside the finite-size trapping region diffusion law.

It is inter_estir}g to compare the two orthogonal profilesqp the other hand, the Monte Carlo stydg] of the dimen-
through their ratio. Let us define the rati(x,t), as sional crossovers from 2D or 3D to 1D on baguette-like lat-
tices for A+A and A+B reactions, with random initial con-
(12) dition, shows that the scaling of the crossover time with
P(x.t) respect to the lattice width deviates significantly from the
Einstein diffusion law and produces exponents ranging be-
tween 1 and 4, instead of an expected value of 2, depending
. on the lattice dimensionality and the reaction type. To deter-
R(x,t) = c (12) mine if this law is relevant to the scaling of the crossover
! time against the width of the slab geometry, we must define
In Fig. 9, we plot the experimentdh), as well as the the crossover time.
theoretical(b) ratios, for our system. It shows that, as time  There are many different ways to determine the crossover
evolves, the deviation of the perpendicular profile from thetime. One reasonable choice is the time whenaluistance
parallel one increases. The agreement between the theoretidals deviated from the two dimensional trajectory. The result
and the experimental ratios is evident. for this choice, denoted by, is shown in Fig. 10 for
The dimensional crossover of the depletion zone inducedeveral slab widths, as obtained from the theoretical expres-
by the geometric confinement of the reaction space implies aions. The slope of 2.03 confirms the Einstein’s Law predic-
crossover time that scales with the width of the reactionion.
space. Previous workl3,14] has shown that the Einstein  Another possible choice for the crossover time exploits
diffusion law correctly describes the crossover times for theour profile ratio analysis. One can look at the slab boundary
onset of finite size effects in regular 1D, 2D, and 3D latticesdistance(x=W/2) for the time 7, at which the ratio starts to

R(X,t) - w

or, for the experimental system, as
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deviate from 1, i.e., where the perpendicular profile begins to

: ’ ’ o g 100=_ IS 174
split from the parallel concentration profile. This is shown in : I t djﬁ'
Fig. 10b), where we have plotted the timesat which the [ - r‘l Latice ity
ratio at the boundaryR(x=W/2,7), is equal to 0.99 and 10E x T

0.999, for several slab width&. Here again, as in Fig. 18), Bounda .

the slopes are around 2, as expected.

IV. SIMULATIONS

r, (lattice units)

0.1k -
A. Methods

1. Monte Carlo simulations F
0.01k

Monte Carlo simulations were performed on a 200/
(W=5,7,9, 11, 15, 21, 31, and blectangular lattice, and a
single point trap was put at the center of this lattice. Particles
with an initial concentratio,=0.25 are randomly generated  F|G. 11. Thed distance vs time a#=0.2, 0.4, 0.6, and 0.8 from

on the lattice at a time step zero. No more than one particlg monte Carlo simulation for a point trap system. The lattice size is

is allowed to occupy a given site at any moment, i.e., we US@01x 21 and a point trap with a trapping probabilipz0.5 is lo-

the excluded volume principle. Particles are allowed initially cated at the center of the lattice. The simulation data resemble well

to land both inside and outside the trap, randomly. the experimental results shown in Fig. 5 and the theoretical results
The diffusion is modeled by random walks of all particles, shown in Fig. 7.

which are independent of each other. If a particle is chosen to

move to a site that is already occupied by another particleye increased the size of the matrix for the concentration by
this move is not allowed and the particle remains at its origi-one after each time step. In this work, in order to extend the
nal site for that time step. The trap is characterized by ajme range, we increase the size of the concentration matrix
trapping probability, p. This parameterp signifies the  opjy when the boundary values have 0.0001% change from
strength by which trapping may occur, and it varies fromine  original value. By doing this, we can extend the time

p=0.0 (no trapping at aJlto p=1.0 (particle is always irre-  steps from 1000 to 50 000, which is needed to investigate the
versibly trappegl Thus, each time that a particle moves into asymptotic regime, within a reasonable calculation time. As
the trap site, the trapping probabiligyis compared to a new pefore, since the matrix size is not preset, we can consider

random number, leading to irreversible trappif@nd re-  ihat the lattice has an infinite length.
moval from the systejnor continuation of the diffusion pro-

cess.
Cyclic boundary condition was used at the edges of the B. Results

long dimension of the lattice, while reflective boundary con- 1o Monte Carlo simulation results for a system of a

dition was used at the edges of the short dimension of thﬁoint trap with a trapping probabilitp=0.5 on a 20X 21
lattice. However, we note that the cyclic and reﬂeCtiverectangular lattice are shown in Fig. il. Thedistance

boundary condition produce the same result in this particulagy, s aimost perfect overlap between parallel and perpen-
case. The quantity monitored is the number of particles at Qjclar directions for a given value in this figure, matching

distancer from the O”Qi”(i-e-' from the trap s"it)e Sipce WE " well with the experimental and theoretical results. At
use a discrete 2D lattice topology, the quaniity |j| is used  4-0 4 0.6, and 0.8, the distance follows the previously

as the value of, for the position ati, j) on the lattice. Fora  opserved2,3] two-dimensional behavior for the time range
fixed tlme step, we count the total number of partlc]es a!;J to ~200 steps, after which it experiences a sharp cross-
each distance on the lattice. Then the number of particles igyer tg a higher slope, typical of a 1D-like behavior, just like

normalized into the concentration, using the total number of,e experimental results in Fig. 5 and the theoretical results
lattice sites at a given distanceto measure thé distance. Fig. 7. At #=0.2, thed distance starts with a two dimen-

The data are the.average of 100 000 runs. For all simulat_iongionad fast-growing, early-time behavior for tiedistances
the reactant profiles were followed from 1 up to 10 000 timegmajier than 1 lattice unit, which is the upper limit of the trap
steps. radius, and then switches directly to the one dimensional
asymptotic behavior of'/2, without experiencing the previ-
ously observedfor the exact two-dimensional cgsegime

We also ran exact enumeration usmgrLAB . Similar to  of slow growth[2,3]. This behavior is similar to the case for
what we described previous[jt—3], the principle is that, at 6=0.4 of the experimental results in Fig. 5.
any time, the concentration of any position is determined by It is worth pointing out that the slopes in the long time
the concentration of its nearest neighbors at the previougange in Fig. 11 are somewhat higher than the theoretically
time step, that is, the concentration of any site on the squangredicted asymptotic value (%ffor the 0 values at 0.4, 0.6,
lattice at timet is one quarter of the sum of the concentra-and 0.8, after the crossover from the two-dimensional behav-
tions of its four nearest neighbors at time stiepl. The ior starts to happen. This is also consistent with the experi-
boundary condition is reflective. In our previous wik-3|, mental and the theoretical results. As shown in Figall2he

0.1 1 10 100 1000 10000

time (steps)

2. Exact enumeration
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FIG. 13. The# distance vs time a#=0.2, 0.4, 0.6, and 0.8 from
F exact enumeration for a point trap system. The lattice is infinitely
- (b) X long with a width of 15, and a point trap with a trapping probability
F - o p=1 is located at the center of the lattice.

6=0.8

6=0.6 e @ asymptotic slope of for 1D and that ofé/2 (i.e., 0.4 in this
g 6=0.4 case for 2D. A crossover from 2D to 1D occurs for all dif-
P [ =02 x 8 ferent widths. As mentioned earlier, it reproduces the transi-
I tion slopes, higher thagl, for all lattice widths, right after the
onset of the crossover from the 2D to 1D behavior. These
, high slopes eventually converge %oin the long time limit
° for the smaller widths atv=5 and 11, while for the bigger
. widths atWw=21 and 51 they appear to approach the slope of
> towards covergence in later times. It also shows that the
(W-1)/2 crossover occurs at different times for different widths. The
_ ) o _ crossover timesyz.,, measured as the point at which tie
FIG. 12. (&) The ¢ distance in parallel direction vs time at gjstance has deviated from the two dimensional trajectory by
6=0.8 from Monte Carlo simulations for a system with a perfecta small fixed valug0.01 in this casefor #=0.8 from Fig.
point trap located at the center of a two-dimensional rectangulay o 5 a5 well as for othed values of§=0.2, 0.4, and 0.6, are
lattice of size 20K W, with W=5, 11, 21, and 51. The deviation a4 in Fig. 12b) against the distance from the trap to the

from two-dimensional behavior occurs later in time for a bigger,_... A .
lattice width. (b) Crossover time vs distance from the trap to the lattice boundary,(W-1)/2. The crossover times do scale

lattice boundary(W-1)/2, for different lattice widths, a¥=0.2,
0.4, 0.6, and 0.8. The crossover time scalescaswz, as expected
from Einstein’s diffusion law. 100 o Exact Enumeration
[ x  Monte Carlo Cx@éf&(
slope higher thaé seems to appear only temporarily, during [ ®
the transition from 2D to 1D, according to the Monte Carlo
simulations. This suggests that the theoretical 1D slopé of
should have eventually been recovered in Figs. 5 and 7, had
the 0 distance been monitored over a longer time range. The -
exact-enumeration results for the longer time range up to [ M
50 000 time steps, as shown in Fig. 13, also clearly show the - MC’
. : N

asymptotic 1D slope o§ for the ¢ distance along the parallel
direction, as predicted.

In order to examine the width dependence of the dimen-
sional crossover, Monte Carlo simulations were carried out

for the point trap system on a 2D rectangular lattice with £ 14, Theg distance a#=0.8 in parallel direction vs time for
different lattice widths. Figure 13) shows thef distance in 3 slab widthw=15 from the exact enumeratiof®) and the Monte
time at #=0.8 from Monte Carlo simulations for a system Carlo simulations(x). A point trap with a trapping probability
with a perfect point trap located at the center of the two-p=1 is located at the center of the lattice. The data from the two
dimensional rectangular lattice of size 20W, where the approaches agree with each other very well, over the entire time
width of the latticeW is varied overW=5, 11, 21, and 51. range, thus suggesting that any potential correlated diffusion effects
The two straight dashed lines represent the theoreticah the Monte Carlo calculations are negligible.

100

4 D> o O

oe >«
™

0.8
o

I
r, ate
&,

10 &

G0 100 1000 10000
time (step)
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simply ast.~W?, suggesting that the Einstein diffusion law, ods: experiment, theory, Monte Carlo simulation, and exact
with respect to the width of the slab geometry, is relevant teenumeration. We observe how thelistance scales with time
the scaling of these crossover times for the growth of deplein two orthogonal directions, parallel with and perpendicular
tion zones around a trap. to the long axis of the slab, as the reaction progresses. At the

The use of the excluded volume principle, combined withvery beginning, thed distance scales anomalouslyt4s, as
an initial concentration as high as 0.25, may suggest thexpected for 2D geometry. Then, when the particles feel that
possibility of correlated diffusion effects in our Monte Carlo the system is not strictly two dimensional, thelistances in
simulations. Such a possibility can be tested by comparindpoth parallel and perpendicular directions deviate fridfh
the results from the Monte Carlo calculations with thoseThe crossover time is proportional to the square of the slab
from the exact enumeration method, as the latter should natidth, according to Einstein’s diffusion law. Th&distance
exhibit any correlation effects. The comparison is shown inin the perpendicular direction increases faster than the coun-
Fig. 14. It shows that thé distances in the parallel direction terpart in the parallel direction. This is because of the dimin-
at #=0.8, for a slab widtAiV=15, derived from the two dif- ished supply of particles to the regions very close to the
ferent approaches, do agree very well over the entire timéoundary. At last, after a region of faster increase)afis-
range.(Only a small deviation occurs at @ distance near tance (the power is greater thaé), the 6 distance finally
100, which is at the boundary of the 28115 square lattice scales witht'’? as we would expect from 1D geometry. The
in the Monte Carlo calculation, where the extra depletionratio of the concentration profiles in the two orthogonal di-
occurs as explained aboy@&his result strongly suggests that rections provides another means to look at the crossover
any possible correlated diffusion effects are absent, or atharacteristics in this restricted, low-dimensional geometry.
least negligible, in the presented Monte Carlo calculations. Our experimental, theoretical and numerical methods agree

very well with each other.
V. SUMMARY
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